Fiche descriptive – Capsule orientante Collège Shawinigan - Programme Sciences de la nature

Réalisée par

Marie-Chris	tine Bélanger
-------------	---------------

Cours concerné	Profession présentée			
Calcul différentiel et intégral II	Géomaticien			
Concept exploré	Moment où présenter la capsule			
Calcul de débit en rivière	Au moment où on étudie les applications du calcul			
	intégral.			

Lien hypertexte vers la capsule

https://youtu.be/rW1hrBv-fdU

Question défi

- 1. À partir du chiffrier Excel contenant des données brutes (fourni par votre enseignant), pris récemment sur une rivière en Mauricie, calculez le débit moyen (ou débit approximatif) de cette rivière.
- 2. Qu'est-ce qu'on peut faire pour obtenir des données plus précises avec le même matériel? Le fichier Excel est joint à l'envoi des documents.

Vitesses de courant pour le calcul de débit

Nombre de lecture	Distance de la rive (m)	Profondeur (m)	Vitesse (m/sec.)
1	0,0	0	0,00
2	0,5	0,39	0,11
3	1,0	0,59	0,25
4	1,5	0,75	0,45
5	2,0	1,12	0,65
6	2,5	1,26	1,11
7	3,0	1,72	1,45
8	3,5	2,1	1,55
9	4,0	2,5	1,70
10	4,5	2,14	1,53
11	5,0	2,04	1,36
12	5,5	1,75	1,19
13	6,0	1,56	0,92
14	6,5	1,23	0,63
15	7,0	0,78	0,45
16	7,5	0,48	0,18
17	8,0	0	0,00

Le débit est égal à l'aire de la section multipliée par la vitesse.

Réponse à la question défi

1. Lors de la prise de mesures de débit d'une rivière, on fait traverser un échosondeur sur toute la largeur de la rivière qui prend les mesures de profondeur de la rivière et la vitesse de déplacement de l'eau en plusieurs points.

Il est à noter que lorsque la profondeur de la rivière est à moins de 1 m, la vitesse de l'eau est prise à 60% de la profondeur et que lorsque la profondeur de la rivière est de plus de 1 m, une mesure de vitesse est prise à 20% et une autre à 80% de la profondeur de la rivière en ce point.

La colonne D du fichier Excel fait la moyenne de ces 2 vitesses quand cela s'applique.

Il est aussi à noter que l'expérience, pour être effective, est faite au même endroit à 2 reprises (2 dates différentes) pour s'assurer qu'il n'y ait pas trop de variabilité du courant.

Pour calculer le débit exact et réel de la rivière, il faudrait déterminer la valeur de

$$\lim_{\substack{\Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^n v(x_i) P(x_i) \Delta x_i \approx \int_a^b [v(x) P(x)] dx \approx \int_a^b f(x) dx$$

où Δx_i est la distance entre chaque mesure, $P(x_i)$ est la profondeur au point x_i et $v(x_i)$ est la vitesse de l'eau au point x_i .

Il est à noter aussi que le nombre de mesures prises par le géomaticien dépend des recommandations du client ou de l'ingénieur responsable.

Dans le fichier Excel, on constate dans l'onglet «réponse» que le débit de la rivière est d'environ 11,7 m³/sec.

No de lecture	Distance de la rive (m)	P(x _i) Profondeur (m)	v(x _i) Vitesse (m/sec.)	Distance entre mesure (Δx _i)	Aire de la surface Δx*P(x)	Débit Aire surface*v(x)	
1	0,0	0	0,00	0,0	0,000	0,000	m³/sec
2	0,5	0,39	0,11	0,5	0,195	0,021	m³/sec
3	1,0	0,59	0,25	0,5	0,295	0,074	m³/sec
4	1,5	0,75	0,45	0,5	0,375	0,169	m³/sec
5	2,0	1,12	0,65	0,5	0,560	0,364	m³/sec
6	2,5	1,26	1,11	0,5	0,630	0,699	m³/sec
7	3,0	1,72	1,45	0,5	0,860	1,247	m³/sec
8	3,5	2,1	1,55	0,5	1,050	1,628	m³/sec
9	4,0	2,5	1,70	0,5	1,250	2,125	m³/sec
10	4,5	2,14	1,53	0,5	1,070	1,637	m³/sec
11	5,0	2,04	1,36	0,5	1,020	1,387	m³/sec
12	5,5	1,75	1,19	0,5	0,875	1,041	m³/sec
13	6,0	1,56	0,92	0,5	0,780	0,718	m³/sec
14	6,5	1,23	0,63	0,5	0,615	0,387	m³/sec
15	7,0	0,78	0,45	0,5	0,390	0,176	m³/sec
16	7,5	0,48	0,18	0,5	0,240	0,043	m³/sec
17	8,0	0	0,00	0,5	0,000	0,000	m³/sec

Débit approximatif de la rivière:

11,716 m³/sec

2. Pour obtenir des données plus précises, il faudrait prendre davantage de mesures sur la même distance.

Présentation de la profession (description des tâches, salaire, etc.)

Géomaticien

Personne qui effectue des tâches liées à la collecte, à la gestion, à la mise à jour et à l'analyse de données à références géo-spatiales et à l'analyse de documents (plans, cartes) à l'aide d'appareils et d'instruments spécialisés dans le but de représenter le territoire de façon exacte.

- Coordonne les différentes activités d'acquisition de données sur le territoire.
- Effectue des prises de mesures au sol en utilisant les techniques de la topométrie ou du positionnement par satellites.
- Effectue des prises de mesures par survol en utilisant les photographies aériennes et les images satellitaires.
- Analyse divers documents cartographiques pour recueillir l'information spatiale concernant les objets répartis sur le territoire.
- Traite les données à références spatiales grâce aux divers outils de cartographie numérique.
- Réalise et met à jour des représentations tridimensionnelles, des cartes topographiques ou des cartes thématiques des régions ciblées.
- Implante des systèmes d'information à références spatiales pour les différents gestionnaires du territoire (forestier, agricole, minier, urbain).
- Rédige des propositions, des rapports et des exposés scientifiques afin de conseiller les gestionnaires ou les décideurs.

Champs d'action

Topométrie, cartographie (numérique et topographie), photogrammétrie, télédétection, système d'information géographique (SIG), systèmes d'information à références spatiales (SIRS), systèmes de localisation par satellite (GPS), mathématiques, géographie, génie civil, construction, informatique, technologie de pointe.

Salaire

Entre 43 000\$ et 85 000\$

Champs d'intérêts

- Aimer travailler avec les chiffres ou les mathématiques.
- Aimer lire, rédiger, communiquer, oralement ou par écrit.
- Aimer travailler physiquement ou manipuler des instruments.
- Aimer communiquer avec les gens pour les convaincre, les persuader.
- Aimer comprendre les phénomènes et résoudre les situations problématiques.
- Aimer travailler en contact avec des personnes ou les aider.
- Aimer travailler fréquemment à l'extérieur, faire de l'activité physique.

Qualités personnelles priorisées

- Autonomie
- Diplomatie
- Esprit critique
- Esprit d'analyse
- Esprit d'équipe
- Esprit d'initiative

- Esprit de synthèse
- Facilité à communiquer
- Facilité d'adaptation
- Minutie
- Rigueur
- Sens de l'observation
- Sens de l'organisation
- Sens des responsabilités

Sources: REPÈRES

Statistiques intéressantes sur la profession

Les perspectives d'emploi sont favorables pour l'ensemble des régions du Québec.

Plus précisément, pour les régions de Montréal, Québec et de la Mauricie, les perspectives d'emploi sont favorables.

Mode de présentation de la capsule (description du parcours de l'enseignant, question de réflexion, etc.)

- Avant le visionnement, demander aux étudiants de noter les façons de travailler du géomaticien.
- Après le visionnement, faire réfléchir les étudiants sur le type de travail qu'ils aimeraient faire dans leur profession : un travail de bureau, dans un laboratoire, sur le terrain, en équipe, individuel, en relation d'aide, en résolution de problèmes, etc...